Spline Confidence Bands for Functional Derivatives.
نویسندگان
چکیده
We develop in this paper a new procedure to construct simultaneous confidence bands for derivatives of mean curves in functional data analysis. The technique involves polynomial splines that provide an approximation to the derivatives of the mean functions, the covariance functions and the associated eigenfunctions. We show that the proposed procedure has desirable statistical properties. In particular, we first show that the proposed estimators of derivatives of the mean curves are semiparametrically efficient. Second, we establish consistency results for derivatives of covariance functions and their eigenfunctions. Most importantly, we show that the proposed spline confidence bands are asymptotically efficient as if all random trajectories were observed with no error. Finally, the confidence band procedure is illustrated through numerical simulation studies and a real life example.
منابع مشابه
Polynomial Spline Confidence Bands for Regression Curves
Asymptotically exact and conservative confidence bands are obtained for a nonparametric regression function, using piecewise constant and piecewise linear spline estimation, respectively. Compared to the pointwise confidence interval of Huang (2003), the confidence bands are inflated by a factor proportional to {log (n)}, with the same width order as the Nadaraya-Watson bands of Härdle (1989), ...
متن کاملSimultaneous confidence bands for derivatives of dependent functional data
Abstract: In this work, consistent estimators and simultaneous confidence bands for the derivatives of mean functions are proposed when curves are repeatedly recorded for each subject. The within-curve correlation of trajectories has been considered while the proposed novel confidence bands still enjoys semiparametric efficiency. The proposed methods lead to a straightforward extension of the t...
متن کاملSimultaneous Confidence Bands for Penalized Spline Estimators
In this paper we construct simultaneous confidence bands for a smooth curve using penalized spline estimators. We consider three types of estimation methods: (i) as a standard (fixed effect) nonparametric model, (ii) using the mixed model framework with the spline coefficients as random effects and (iii) a Bayesian approach. The volume-of-tube formula is applied for the first two methods and co...
متن کاملA Simultaneous Confidence Band for Sparse Longitudinal Regression.
Functional data analysis has received considerable recent attention and a number of successful applications have been reported. In this paper, asymptotically simultaneous confidence bands are obtained for the mean function of the functional regression model, using piecewise constant spline estimation. Simulation experiments corroborate the asymptotic theory. The confidence band procedure is ill...
متن کاملLocal and Global Asymptotic Inference in Smoothing Spline Models
This article studies local and global inference for smoothing spline estimation in a unified asymptotic framework. We first introduce a new technical tool called functional Bahadur representation, which significantly generalizes the traditional Bahadur representation in parametric models, that is, Bahadur [Ann. Inst. Statist. Math. 37 (1966) 577–580]. Equipped with this tool, we develop four in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of statistical planning and inference
دوره 142 6 شماره
صفحات -
تاریخ انتشار 2012